134 research outputs found

    Pulsed Quantum Frequency Combs from an Actively Mode-locked Intra-cavity Generation Scheme

    Get PDF
    We introduce an intra-cavity actively mode-locked excitation scheme for nonlinear microring resonators that removes the need for external laser excitation in the generation of pulsed two-photon frequency combs. We found a heralded anti-bunching dip of 0.245 and maximum coincidence-to-accidental ratio of 110 for the generated photon pairs

    Spectral Hong–Ou–Mandel Interference between Independently Generated Single Photons for Scalable Frequency-Domain Quantum Processing

    Get PDF
    The photon's frequency degree of freedom, being compatible with mature telecom infrastructure, offers large potential for the stable and controllable realization of photonic quantum processing applications such as the quantum internet. The Hong–Ou–Mandel effect, as a two-photon interference phenomenon, serves as a central building block for such frameworks. A key element yet missing to enable meaningful frequency-based implementations as well as scalability in the number of processed photons, is the demonstration of the Hong–Ou–Mandel effect between independently created photons of different frequencies. The experimental implementation of bosonic and fermionic frequency domain Hong–Ou–Mandel interference between independently generated single photons is reported here, with measured visibilities of 74.31% ± 3.56% and 86.44% ± 8.27%, respectively. This is achieved through a scalable photonic frequency circuit that creates two post-selected pure single photons, which undergo frequency mixing at an electro-optic phase modulator. The system is on-the-fly reconfigurable allowing to probe bosonic and fermionic Hong–Ou–Mandel interference in the same experimental setup. The work demonstrates the versatility of frequency domain processing and its scalability toward higher photon numbers, which enables new quantum gate concepts as well as the establishment of frequency-based large-scale quantum networks. © 2021 The Authors. Laser & Photonics Reviews published by Wiley-VCH Gmb

    A Passively Mode-locked Nanosecond Laser with an Ultra-narrow Spectral Width

    Get PDF
    Many different mode-locking techniques have been realized in the past [1, 2], but mainly focused on increasing the spectral bandwidth to achieve ultra-short coherent light pulses with well below picosecond duration. In contrast, no mode-locked laser scheme has managed to generate Fourier-limited nanosecond long pulses, which feature narrow spectral bandwidths (~MHz regime) instrumental to applications in spectroscopy, efficient excitation of molecules, sensing, and quantum optics. The related limitations are mainly caused by the adverse operation timescales of saturable absorbers, as well as by the low strength of the nonlinear effects typically reachable through nanosecond pulses with manageable energies

    On-chip Quantum State Generation by Means of Integrated Frequency Combs

    Get PDF
    Summary form only given. This paper investigates different approaches to generate optical quantum states by means of integrated optical frequency combs. These include the generation of multiplexed heralded single-photons, the first realization of cross-polarized photon-pairs on a photonic chip, the first generation of multiple two-photon entangled states, and the first realizations of multi-photon entangled quantum states on a photonic chip

    Generation of Complex Quantum States Via Integrated Frequency Combs

    Get PDF
    The generation of optical quantum states on an integrated platform will enable low cost and accessible advances for quantum technologies such as secure communications and quantum computation. We demonstrate that integrated quantum frequency combs (based on high-Q microring resonators made from a CMOS-compatible, high refractive-index glass platform) can enable, among others, the generation of heralded single photons, cross-polarized photon pairs, as well as bi- and multi-photon entangled qubit states over a broad frequency comb covering the S, C, L telecommunications band, constituting an important cornerstone for future practical implementations of photonic quantum information processing

    Passively mode-locked laser with an ultra-narrow spectral width

    Get PDF
    Most mode-locking techniques introduced in the past focused mainly on increasing the spectral bandwidth to achieve ultrashort, sub-picosecond-long coherent light pulses. By contrast, less importance seemed to be given to mode-locked lasers generating Fourier-transform-limited nanosecond pulses, which feature the narrow spectral bandwidths required for applications in spectroscopy, the efficient excitation of molecules, sensing and quantum optics. Here, we demonstrate a passively mode-locked laser system that relies on simultaneous nested cavity filtering and cavity-enhanced nonlinear interactions within an integrated microring resonator. This allows us to produce optical pulses in the nanosecond regime (4.3 ns in duration), with an overall spectral bandwidth of 104.9 MHz—more than two orders of magnitude smaller than previous realizations. The very narrow bandwidth of our laser makes it possible to fully characterize its spectral properties in the radiofrequency domain using widely available GHz-bandwidth optoelectronic components. In turn, this characterization reveals the strong coherence of the generated pulse train

    Inviscid Burgers’ Equation and Riemann Waves in Optics

    Get PDF
    We report on the experimental observation of inviscid Burgers' equation dynamics and Riemann wave formation in a nonlinear fiber. Experimental results clearly show controllable pulse front steepening and shock formation

    The Inviscid Burgers' Equation in Nonlinear Fiber Optics

    Get PDF
    We report on the experimental generation of Riemann waves in an optical fiber system, allowing for the controlled formation of shock waves, as analytically described by a seminal equation of fluid dynamics: the so-called Inviscid Burgers’ Equation

    AlGaAs-on-insulator waveguide for highly efficient photon-pair generation via spontaneous four-wave mixing

    Get PDF
    We report on the generation of correlated photon pairs in AlGaAs-on-insulator (AlGaAs-OI) waveguides through nonlinear spontaneous four-wave-mixing (SFWM). Our measurements reveal an SFWM pair generation efficiency of ∌0.096×10^12pairs/(sW^2) at a wavelength of 1550 nm. This is one of the highest efficiencies achieved to date for integrated SFWM sources. A maximal coincidence-to-accidental ratio of ∌122 is measured. A spectral characterization of the device’s pair emission at the quantum level demonstrates a broad generation bandwidth of 2.0 THz, which is important for frequency multiplexing applications. Our results indicate that AlGaAs-OI is an efficient material platform for integrated quantum photonics at telecom wavelengths
    • 

    corecore